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SHOCK AND EXPANSION WAVES IN TRANSONIC FLOW 

A. S. Fonarev UDC 533.6.011 

The present article is concerned with the propagation of a shock wave and a simple ex- 
pansion wave in transonic flow. Approximate relations are obtained for the flow parameters, 
and the resulting asymptotic dependences are analyzed as the small parameters of transonic 
theory tend to zero. The derived equaitons are used to show that a universal relation of the 
kind that exists in the linear theory of supersonic flow between the optimum permeability 
coefficient and the freestream Mach number M does not exist independently of the flow-ob- 
structing body at M > 1 for the Darcy condition customarily used in the theory of linear in- 
duction of pipe walls. 

Nikol'skii [i] has succeeded in obtaining a universal relation for the optimum perme- 
ability coefficient of a perforated wall in the case of supersonic pipe flow (the influence 
of the wall on the flow in the pipe is assumed to be completely eliminated), satisfying the 
Darcy condition v/u + R = 0 (u and v are the horizontal and vertical components of the per- 
turbed velocity, and R is the perforation ratio). Assuming small deviations of the velocity 
from the freestream velocity, Nikol'skii showed that the relation v/u = -~/M 2 - 1 holds in an 
unbounded flow both in the shock wave and in the expansion wave generated by an obstructing 
body and does not depend on the parameters of the body (M l is the freestream Mach number of 
the supersonic flow). This relation is proposed in [i] as the condition for obtaining non- 
inductive flow in a supersonic pipe, where it is required that the permeability coefficient 
of the walls satisfy the equation Rop t = V~l - i. 

Here we investigate the flow properties in a shock wave and in an expansion wave when 
M • i. We show that a unique functional relation for the optimum permeability coefficient 
of the wall no longer exists for near-sonic supersonic flow, and instead it varies along 
the length of the pipe wall in each flow situation and differs for each experiment. 

i. We consider the exact equations for an oblique compression shock [2, 3] (Fig. I) 

I =  2v (1.1) 

sin 2 g - -  t/M~ ( 1 . 2 )  
tg  0 (%' -5 t)/2 - -  sin2 ~ -~ t /M 2 gtg 8; 

1 + [(%, - -  1)/2] M, ~ sin e ~ ( 1 . 3 )  
M~ s in  2 (8 - -  O) = 

%,M~ sin 2 ~ - -  (V - -  t)12 

Here p is the pressure, O and ~ are the flow turning angle and the angle of inclination of 
the shock front, both measured relative to the x axis, [31 is the supplementary angle measured 
from the y axis, the subscripts 1 and 2 refer to the state of the flow before and after the 
shock front, and y is the adiabatic exponent. 

Transonic flow is known to be characterized by two small parameters, whose interrelation- 
ship is dictated by the particular transonic regime characterized by the similarity param- 
eter. The parameters M 2 - 1 and M 2 - 1 are convenient choices for the analysis of flow 
around a compression shock. The angles 8 << 1 and ~l << 1 are also small in this case and can 
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be determined once the first two parameters have been specified. We assume that M; > i and we 
do not impose any condition on the sign of M 2 - i, so that the flow can also be subsonic near 
the sonic point. 

Expanding Eqs. (1.1)-(1.3) in the small parameters and keeping only the terms needed, we 
obtain the following equations in the principal approximation: 

5 _ ~ = ~ (~ _ ~) (M, ~ - -  1); ( 1 .  ~) 
Pl 

0 -- ' ( t - s ) ( l  + s) 1/~ (M~--  03/2; ( 1 . 5 )  
V2 (v + t) 

ctg ~ ~ 8, = ~ r + ~)1/2 (M~ - -  01% ( 1 . 6 )  

I s)(M~ l), (1 .7 )  sin[3 = 1 - - -g ( l  + 

where s = (M~ - I)/(M 2 - I). Taking into account the relations for u and v (perturbed veloc- 

ity components) u =-(I/x)!((P2/Pz) -I) and v = 0, which are valid in the first approximation 
on the basis of the theory of small perturbations, we obtain 

~ ' s) ~/~" (M~ - t)  1/~. u ~ - ~ ( t +  (1 .8 )  

The small quantities are independent, so that the parameter s can be chosen arbitrarily in 
the expressions preceding the factor (M~ - i), but the range of variation of s is limited 
by Eq. ( I , 6 ) : - 1  ~ s ~ t .  

Thus, the expressions for the coefficients of (M~ - I) have the distinctive feature 
that a double limit does not exist as the two parameters tend independently to zero. By 
specifying different values of s, we obtain different coefficients. These dependences are 
shown in Fig. 2. 

We now consider some typical examples. Let the passage to the limit be such that M 2 = 
1 and s = 0. The equations for the pressure, the turning angle, and the angle of inclina- 
tion of the shock front then have the form 

' 1) 3/2,ctg~-- I (M2 )1/~. P,P2 I = ~ + + I ( M ~ - - '  ), 0=1/~(7_~_t)(M~-- ~--~v , - - t  

On the  o t h e r  hand,  i f  the  passage  to  the  l i m i t  co r responds  to a normal shock ( f o r  which the  
f low t u r n i n g  ang le  i s  equa l  to  ze ro ,  and s = - 1 ) ,  we have 

P2 I = 2? (M~--I) ,  O=O, ergO=O, 

where the velocity at the shock front is subsonic. 

All other transitions are legitimate. In particular, for s = 1 we obtain a Mach line, 
which corresponds to the well-known regime from the theory of characteristics for the equa- 
tions of supersonic gas dynamics: 

ctg 13 = ],/'M-~-- t. 
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Each regime corresponds to a value of the K~rm~n similarity parameter 

;Ks = (M~ - -  1)/0 ~/~ = 21/3 (? + 1) 2/3 (t + s) -Iz~ (t - -  s) -~/~. 

We n o t e  t h a t  Ks has  a l o w e r  bound ( s  = - 1 / 3 )  in  t h e  v i c i n i t y  o f  t h e  shock  wave i n  t r a n s o n i c  
flow: 3.4-~/~(~ q- I) 2/~ ~ Ks < oo. 

The function Ks(s) is plotted in Fig. 3. The minimum value of K s is attained in the 
subsonic region after the shock. The transition through the postshock sonic point (M 2 = i) 
takes place at s = 0. The fact that K s has a lower bound (a regime with K s = 0 is impossible 
in the vicinity of the shock) must be taken into account in the study of flows with weak 
shocks in the approximation of the Tricomi equation, where the transonic similarity param- 
eter is assumed to be equal to zero for the entire region. 

2. We now consider flow in a Prandtl-Meyer expansion wave, in which case the flow 
velocities before (Ml~1) and after (M 2 > i) the wave are close to the sound velocity (Fig. 
ib). Invoking the exact equations for an expansion wve [2, 3] in terms of the flow turning 
angle and the pressure and expanding it in the small parameters, we obtain 

0 3 (72+ t) [(M~ - -  1)3/2 - -  (M~ - -  1)~/2]; ( 2 . 1 )  

P~-- I = ~ [(M~--  1 ) - -  (M~-- t)1. ( 2 . 2 )  
Pl 

Introducing the parameter s = (M~ - I)/(M~ - I) as before, we have 

0 = ~ 2  (s 3 /2-  t )  (M~-- 1)3/2; (2 .3 )  

P2 
t = ~ (l - -  s) (M~ - -  l ) ,  s ~ l ;  (2 4) 

Pl 

v 2 s2/3--t{M 2 1)1/2 (2 5) 
-~= 3 ~ "k 1 ~  �9 

Again ,  t h e  s o l u t i o n  c o r r e s p o n d i n g  t o  an e x p a n s i o n  wave i s  n o t  u n i q u e  f o r  t h e  c o e f f i -  
c i e n t s  in  Eqs.  ( 2 . 3 )  and ( 2 . 4 ) ;  d i f f e r e n t  c o e f f i c i e n t s  a r e  o b t a i n e d  in  t h e  l i m i t  (M~ - 1) § 
0 ,  d e p e n d i n g  on t h e  v a l u e  o f  s .  Fo r  ex am p le ,  when s o n i c  f l o w  Mz = 1 expands  t o  t h e  v a l u e  
M 2 [ c o r r e s p o n d i n g  t o  s = - ,  so t h a t  t h e  l i m i t  must  be c a l c u l a t e d  f rom Eqs.  ( 2 . 1 )  and ( 2 . 2 ) ] ,  
we find 

2 (M~- - I )  3/2 , p ~ - I =  ~ (M~--I) .  
0 = 3 (~ + I-------5 Pl -- ~ +---7 

This regime corresponds to the transonic parameter K w = (M~ - l)/O 2/~ = 0. It is evident 
from Eqs. (2.3) and (2.4) that other values of K w correspond to different values of the coef- 
ficients in the equations for the flow turning angle and the pressure; Kw is related to s 
by the equation K w = (3/2)2/3(7 + l)~/a(sS/2 - I) -l. This dependence is shown in Fig. 3. 

3. The indicated multiple-valued ambiguity of the resulting dependences in the transo- 
nic velocity range is a fundamental departure from the familiar, perfectly single-valued, 
supersonic flow equations, where the perturbations are small in comparison with the param- 
eter M~ -l.l i.e., [M 2 - MII ~ M 1 - i. 

For weak compression shocks this condition is equivalent to the assumption that the 
difference between the angles of inclination of the shock front and the characteristic is 
much smaller than the angle of deviation ~i of the compression shock from the vertical (see 

58 



Fig. la). This condition yields an additional relationship between the two parameters (M I 
and M2), closes the system (1.1)-(1.3), and makes the dependence of the coefficients on M l 
single-valued for all flow deviation angles as long as they are not too large. This is why 
the dependence of the optimum permeability coefficient of the wall on M in supersonic flow 
is universal [i]. 

For flow that is supersonic but in the transonic regime, a unique dependence no longer 
exists for the optimum permeability coefficient; it varies along the length of the pipe wall 
in each case and differs for each experiment. To illustrate this fact, we give the example 
of the calculation of a gas flow around a slender wedge at zero angle of attack with a veloc- 
ity slightly greater than the sonic velocity. The half-angle of the wedge is 8 = i~ ' . 

Figure 4 shows how Ropt, normalized to /M~ - i, varies as a function of M I in the region 
above the wedge behind the compression shock. The calculations have been carried out accord- 
ing to the exact gasdynamic equations and tables [4]. 

i. 

. 

3. 
4. 

LITERATURE CITED 

G. L. Grodzovskii, A. A. Nikol'skii, G. P. Svishchev, and G. I. Taganov, Supersonic Gas 
Flows in Perforated Walls [in Russian], Mashinostroenie, Moscow (1967). 
L. V. Ovsyannikov, Lectures in Gas Dynamics [in Russian], Nauka, Moscow (19811). 
L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1973). 
A. Ferri, Elements of Aerodynamics of Supersonic Flows, Macmillan, New York (1949). 

AN EXACT SOLUTION FOR THE END EFFECT OF A WING OF FINITE SIZE 

IN SUPERSONIC FLOW 

N. F. Vorob'ev [DC 533.69 

The problem of supersonic flow over a thin wing Df finite size, examined in a linear 
approximation, reduces to solving the wave equation for the velocity potential. The condition 
that the flow does not penetrate the wing surface is then carried to the base plane, and in 
the remainder of this plane (outside the projection of the wing) certain conditions are im- 
posed on the gasdynamic parameters of the flow. The solution of the problem is given in [I] 

! 
when the velocity potential is determined via the normal derivative in the base plane ~U, and 
outside the wing projection we have the condition that the potential goes to zero. The gas- 
dynamic flow parameters (pressure, downwash outside the wing) obtained from this solution 
take on physically invalid infinite values in the vicinity of the subsonic leading edge. 
Expressions are given in [2] for the velocity potential and its derivatives in terms of the 
first and second derivatives of the potential in the base plane, which allows one to apply 
additional boundary conditions and obtain a solution of the flow problem in which the gas- 
dynamic flow parameters are in a class of bounded functions. 

This paper derives formulas for calculating the gasdynamic flow parameters in the case 
when the velocity potential is determined [2] via the " " " ' ,, first derivative ~ and the second 
derivative #~$ (the surface curvature in the incident stream direction) in the base: plane, 
and in the part of the base plane outside the wing projection the condition of continuity of 
the derivative ~ (pressure) is applied. 

i. The velocity potential at the point M(x, y, z) lying in the perturbed region above 
' in the base plane D = 0 from the formula [I] the wing is found via the normal derivative ~N 

= - ~ ~ (~, ~) ~ ~ d~,  ( i .  1 ) 

where ~ = r - l ;  r---- t / ( z - -  ~ ) 2 _ ( z _  ~)2_y2;  (sq- o)!lis the  r e g i o n  of  dependence of  the  p o i n t  M in 
the plane ~ = 0 (Fig. i). Part of the region of dependence s(COOiDiMoC) coincides with the 
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